Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.294
Filtrar
1.
BMC Infect Dis ; 24(1): 373, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565980

RESUMO

BACKGROUND: Bloodstream infections (BSI) are the major cause of morbidity and mortality in children in developing countries. The purpose of the current study was to establish the antimicrobial susceptibility pattern of bacterial isolates from bloodstream infections at Children's Medical Center Hospital (CMC), Tehran, Iran. METHODS: We retrospectively recorded all positive blood cultures and antimicrobial susceptibility of all bloodstream isolates among children admitted to CMC, during 5 years. Specimen culture, bacterial identification, and antimicrobial susceptibility testing were performed according to standard laboratory methods. RESULTS: From 3,179 pathogens isolated from the blood cultures 2,824 bacteria were cultured, with 1,312 cases being identified as Gram-positive bacteria (46%) and 1,512 cases as Gram-negative bacteria (54%). The most common Gram-negative bacteria isolated were as follows: Pseudomonas spp. (n = 266, 17.6%), Klebsiella pneumoniae (n = 242, 16%), Stenotrophomonas maltophilia (n = 204, 13.5%), Enterobacter spp. (n = 164, 10.8%), Escherichia coli (n = 159, 10.5%), Pseudomonas aeruginosa (n = 126, 8.3%), Serratia marcescens (n = 121, 8%), and Acinetobacter baumannii (n = 73, 4.8%). The most common Gram-positive bacteria isolated were coagulase-negative staphylococci (CONS) (n = 697, 53%), Streptococcus spp. (n = 237, 18%), Staphylococcus aureus (n = 202, 15%) and Enterococcus spp. (n = 167, 12.7%). 34% of bacterial strains were isolated from ICUs. The rates of methicillin resistance in S. aureus and CONS were 34% and 91%, respectively. E. coli isolates showed high resistance to cefotaxime (84%). All isolates of K. pneumoniae were susceptible to colistin and 56% were susceptible to imipenem. P. aeruginosa isolates showed high susceptibility to all antibiotics. CONCLUSIONS: Our findings emphasize the need of clinicians having access to up-to-date bacterial susceptibility data for routinely prescribed drugs. Continuous monitoring of changes in bacterial resistance will aid in the establishment of national priorities for local intervention initiatives in Iran. The increased risk of BSI caused by antibiotic-resistant organisms, emphasizes the significance of implementing appropriate antibiotic prescribing regulations and developing innovative vaccination techniques in Iran.


Assuntos
Bacteriemia , Sepse , Infecções Estafilocócicas , Humanos , Criança , Antibacterianos/farmacologia , Irã (Geográfico)/epidemiologia , Staphylococcus aureus , Escherichia coli , Estudos Retrospectivos , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Farmacorresistência Bacteriana , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Staphylococcus , Pseudomonas aeruginosa , Klebsiella pneumoniae , Pseudomonas , Encaminhamento e Consulta , Hospitais , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-38587505

RESUMO

By investigating wet and dry age-related ripening of beef, Pseudomonas strains V3/3/4/13T and V3/K/3/5T were isolated. Strain V3/3/4/13T exhibited more than 99 % 16S rRNA gene-based similarity to Pseudomonas fragi and other members of this group, while isolate V3/K/3/5T was very close to Pseudomonas veronii and a number of relatives within the Pseudomonas fluorescens group. Additional comparisons of complete rpoB sequences and draft genomes allowed us to place isolate V3/3/4/13T close to Pseudomonas deceptionensis DSM 26521T. In the case of V3/K/3/5T the closest relative was P. veronii DSM 11331T. Average nucleotide identity (ANIb) and digital DNA-DNA hybridization (dDDH) values calculated from the draft genomes of V3/3/4/13T and P. deceptionensis DSM 26521T were 88.5 and 39.8 %, respectively. For V3/K/3/5T and its closest relative P. veronii DSM 11331T, the ANIb value was 95.1 % and the dDDH value was 60.7 %. The DNA G+C contents of V3/3/4/13T and V3/K/3/5T were 57.4 and 60.8 mol%, respectively. Predominant fatty acids were C16 : 0, C18 : 1 ω7c, C17 : 0 cyclo and summed feature C16 : 1 ω7ct/C15 : 0 iso 2OH. The main respiratory quinones were Q9, with minor proportions of Q8 and, in the case of V3/K/3/5T, additional Q10. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and, in the case of V3/K/3/5T, additional phosphatidylcholine. Based on the combined data, isolates V3/3/4/13T and V3/K/3/5T should be considered as representatives of two novel Pseudomonas species. The type strain of the newly proposed Pseudomonas kulmbachensis sp. nov. is V3/3/4/13T (=DSM 113654T=LMG 32520T), a second strain belonging to the same species is FLM 004-28 (=DSM 113604=LMG 32521); the type strain for the newly proposed Pseudomonas paraveronii sp. nov. is V3/K/3/5T (=DSM 113573T=LMG 32518T) with a second isolate FLM 11 (=DSM 113572=LMG 32519).


Assuntos
Galinhas , Ácidos Graxos , Animais , Bovinos , Composição de Bases , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Pseudomonas/genética , Nucleotídeos
3.
J Environ Manage ; 357: 120797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574707

RESUMO

Phosphate materials (PMs) combine with phosphate solubilizing bacteria play an essential roles in lead (Pb) immobilization, but their resulting ability to reduce Pb bioavailability may vary depending on PMs used. In this study, Pseudomonas edaphica GAU-665 and three PMs: tricalcium phosphate, calcium phytate and nano-hydroxyapatite were respectively encapsulated into bio-beads by sodium alginate, which immobilization efficiency of Pb2+ were 99.11%, 97.76% and 99.02% at initial Pb2+ concentration of 200 mg L-1, respectively. The Pb2+ immobilization performance of bio-beads under different conditions and their organic acids secreted were examined. Most Pb2+ was immobilized by bio-beads through combined functions of adsorption, precipitation, ion exchange and biomineralization, accompanied by the formation of more stable compounds such as Pb3(PO4)2, Pb5(PO4)3OH and Pb5(PO4)3Cl. Meanwhile, pot experimental results indicated that the inoculation of CPhy (calcium phytate) bio-beads with PSB have highest biomass and root growth of oat (Avena sativa L.) in Pb-stressed compared with CK, which increased the content of chlorophyll b (167.51%) in shoot. In addition, the CPhy bio-beads enhance the peroxidase, catalase activities and reduce the malondialdehyde content to alleviating lead physiological toxicity in oat, which reductions the Pb accumulation in shoot (52.06%) and root (81.04%), and increased the residual fraction of Pb by 165.80% in soil. These findings suggest the bio-beads combined with P. edaphica GAU-665 and calcium phytate is an efficient Pb immobilization material and provided feasible way to improve safety agricultural production and Pb-contaminated soil remediation.


Assuntos
Fosfatos , Poluentes do Solo , Chumbo , Pseudomonas , Ácido Fítico , Solo , Poluentes do Solo/análise
4.
PLoS One ; 19(4): e0297867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603730

RESUMO

We sequenced and comprehensively analysed the genomic architecture of 98 fluorescent pseudomonads isolated from different symptomatic and asymptomatic tissues of almond and a few other Prunus spp. Phylogenomic analyses, genome mining, field pathogenicity tests, and in vitro ice nucleation and antibiotic sensitivity tests were integrated to improve knowledge of the biology and management of bacterial blast and bacterial canker of almond. We identified Pseudomonas syringae pv. syringae, P. cerasi, and P. viridiflava as almond canker pathogens. P. syringae pv. syringae caused both canker and foliar (blast) symptoms. In contrast, P. cerasi and P. viridiflava only caused cankers, and P. viridiflava appeared to be a weak pathogen of almond. Isolates belonging to P. syringae pv. syringae were the most frequently isolated among the pathogenic species/pathovars, composing 75% of all pathogenic isolates. P. cerasi and P. viridiflava isolates composed 8.3 and 16.7% of the pathogenic isolates, respectively. Laboratory leaf infiltration bioassays produced results distinct from experiments in the field with both P. cerasi and P. syringae pv. syringae, causing significant necrosis and browning of detached leaves, whereas P. viridiflava conferred moderate effects. Genome mining revealed the absence of key epiphytic fitness-related genes in P. cerasi and P. viridiflava genomic sequences, which could explain the contrasting field and laboratory bioassay results. P. syringae pv. syringae and P. cerasi isolates harboured the ice nucleation protein, which correlated with the ice nucleation phenotype. Results of sensitivity tests to copper and kasugamycin showed a strong linkage to putative resistance genes. Isolates harbouring the ctpV gene showed resistance to copper up to 600 µg/ml. In contrast, isolates without the ctpV gene could not grow on nutrient agar amended with 200 µg/ml copper, suggesting ctpV can be used to phenotype copper resistance. All isolates were sensitive to kasugamycin at the label-recommended rate of 100µg/ml.


Assuntos
Prunus dulcis , Pseudomonas syringae , Pseudomonas , Filogenia , Prunus dulcis/genética , Cobre , Gelo , Genômica
5.
Int J Food Microbiol ; 415: 110645, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430687

RESUMO

This study aimed to assess the growth of Pseudomonas spp. and psychrotrophic bacteria in chilled Pacu (Piaractus mesopotamicus), a native South American fish, stored under chilling conditions (0 to 10 °C) through the use of predictive models under isothermal and non-isothermal conditions. Growth kinetic parameters, maximum growth rate (µmax, 1/h), lag time (tLag, h), and (Nmax, Log10 CFU/g) were estimated using the Baranyi and Roberts microbial growth model. Both kinetic parameters, growth rate and lag time, were significantly influenced by temperature (P < 0.05). The square root secondary model was used to describe the bacteria growth as a function of temperature. Secondary models, √µ = 0.016 (T + 10.13) and √µ =0.017 (T + 9.91) presented a linear correlation with R2 values >0.97 and were further validated under non-isothermal conditions. The model's performance was considered acceptable to predict the growth of Pseudomonas spp. and psychrotrophic bacteria in refrigerated Pacu fillets with bias and accuracy factors between 1.24 and 1.49 (fail-safe) and 1.45-1.49, respectively. Fish biomarkers and spoilage indicators were assessed during storage at 0, 4, and 10 °C. Volatile organic compounds, VOCs (1-hexanol, nonanal, octenol, and indicators 2-ethyl-1-hexanol) showed different behavior with storage time (P > 0.05). 1H NMR analysis confirmed increased enzymatic and microbial activity in Pacu fillets stored at 10 °C compared to 0 °C. The developed and validated models obtained in this study can be used as a tool for decision-making on the shelf-life and quality of refrigerated Pacu fillets stored under dynamic conditions from 0 to 10 °C.


Assuntos
Bactérias , Pseudomonas , Animais , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Temperatura , Microbiologia de Alimentos , Conservação de Alimentos , Contagem de Colônia Microbiana , Armazenamento de Alimentos
6.
Pestic Biochem Physiol ; 199: 105759, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458662

RESUMO

The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.


Assuntos
Agaricus , Polilisina , Pseudomonas , Polilisina/farmacologia , Resistência à Doença
7.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511653

RESUMO

Different bacteria change their life styles in response to specific amino acids. In Pseudomonas putida (now alloputida) KT2440, arginine acts both as an environmental and a metabolic indicator that modulates the turnover of the intracellular second messenger c-di-GMP, and expression of biofilm-related genes. The transcriptional regulator ArgR, belonging to the AraC/XylS family, is key for the physiological reprogramming in response to arginine, as it controls transport and metabolism of the amino acid. To further expand our knowledge on the roles of ArgR, a global transcriptomic analysis of KT2440 and a null argR mutant growing in the presence of arginine was carried out. Results indicate that this transcriptional regulator influences a variety of cellular functions beyond arginine metabolism and transport, thus widening its regulatory role. ArgR acts as positive or negative modulator of the expression of several metabolic routes and transport systems, respiratory chain and stress response elements, as well as biofilm-related functions. The partial overlap between the ArgR regulon and those corresponding to the global regulators RoxR and ANR is also discussed.


Assuntos
Arginina , Proteínas Repressoras , Arginina/metabolismo , Proteínas Repressoras/genética , Pseudomonas/genética , Expressão Gênica , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
Chemosphere ; 355: 141828, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552800

RESUMO

Microorganisms play an important role in heavy metal bioremediation and soil fertility. The effects of soil inoculation with Pseudomonas sp. W112 on Cd accumulation in wheat were investigated by analyzing the transport, subcellular distribution and speciation of Cd in the soil and plants. Pseudomonas sp. W112 application significantly decreased Cd content in the roots, internode and grains by 10.2%, 29.5% and 33.0%, respectively, and decreased Cd transfer from the basal nodes to internodes by 63.5%. Treatment with strain W112 decreased the inorganic and water-soluble Cd content in the roots and increased the proportion of residual Cd in both the roots and basal nodes. At the subcellular level, the Cd content in the root cell wall and basal node cytosol increased by 19.6% and 61.8%, respectively, indicating that strain W112 improved the ability of the root cell wall and basal node cytosol to fix Cd. In the rhizosphere soil, strain W112 effectively colonized and significantly decreased the exchangeable Cd, carbonate-bound Cd and iron-manganese oxide-bound Cd content by 43.5%, 27.3% and 17.6%, respectively, while it increased the proportion of residual Cd by up to 65.2%. Moreover, a 3.1% and 23.5% increase in the pH and inorganic nitrogen content in the rhizosphere soil, respectively, was recorded. Similarly, soil bacterial community sequencing revealed that inoculating with strain W112 increased the abundance of Pseudomonas, Thauera and Azoarcus, which are associated with inorganic nitrogen metabolism, and decreased that of Acidobacteria, which is indicative of soil alkalinization. Hence, root application of Pseudomonas sp. W112 improved soil nitrogen availability and inhibited Cd accumulation in the wheat grains in a two-stage process: by reducing the Cd availability in the rhizosphere soil and by improving Cd interception and fixation in the wheat roots and basal nodes. Pseudomonas sp. W112 may be a suitable bioremediation agent for restoring Cd-contaminated wheat fields.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Triticum/metabolismo , Solo/química , Disponibilidade Biológica , Pseudomonas/metabolismo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Nitrogênio/análise
9.
Front Immunol ; 15: 1358247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469316

RESUMO

Galleria mellonella larvae repeatedly infected with Pseudomonas entomophila bacteria re-induced their immune response. Its parameters, i.e. the defence activities of cell-free hemolymph, the presence and activity of antimicrobial peptides, and the expression of immune-relevant genes were modulated after the re-challenge in comparison to non-primed infected larvae, resulting in better protection. No enhanced resistance was observed when the larvae were initially infected with other microorganisms, and larvae pre-infected with P. entomophila were not more resistant to further infection with other pathogens. Then, the peptide profiles of hemolymph from primed- and non-primed larvae infected with P. entomophila were compared by quantitative RP-HPLC (Reverse Phase - High Performance Liquid Chromatography). The level of carbonic anhydrase, anionic peptide-1, proline peptide-2, and finally, unknown so far, putative Kazal peptide Pr13a was higher in the primed infected animals than in the larvae infected with P. entomophila for the first time. The expression of the Pr13a gene increased two-fold after the infection, but only in the primed animals. To check whether the enhanced level of Pr13a could have physiological significance, the peptide was purified to homogeneity and checked for its defence properties. In fact, it had antibacterial activity: at the concentration of 15 µM and 7.5 µM it reduced the number of P. entomophila and Bacillus thuringiensis CFU, respectively, to about 40%. The antibacterial activity of Pr13a was correlated with changes observed on the surface of the peptide-treated bacteria, e.g. surface roughness and adhesion force. The presented results bring us closer to finding hemolymph constituents responsible for the effect of priming on the immune response in re-infected insects.


Assuntos
Mariposas , Pseudomonas , Animais , Larva , Peptídeos/farmacologia , Antibacterianos/farmacologia
10.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38546328

RESUMO

Swimming motility is a key bacterial trait, important to success in many niches. Biocontrol bacteria, such as Pseudomonas protegens Pf-5, are increasingly used in agriculture to control crop diseases, where motility is important for colonization of the plant rhizosphere. Swimming motility typically involves a suite of flagella and chemotaxis genes, but the specific gene set employed for both regulation and biogenesis can differ substantially between organisms. Here we used transposon-directed insertion site sequencing (TraDIS), a genome-wide approach, to identify 249 genes involved in P. protegens Pf-5 swimming motility. In addition to the expected flagella and chemotaxis, we also identified a suite of additional genes important for swimming, including genes related to peptidoglycan turnover, O-antigen biosynthesis, cell division, signal transduction, c-di-GMP turnover and phosphate transport, and 27 conserved hypothetical proteins. Gene knockout mutants and TraDIS data suggest that defects in the Pst phosphate transport system lead to enhanced swimming motility. Overall, this study expands our knowledge of pseudomonad motility and highlights the utility of a TraDIS-based approach for analysing the functions of thousands of genes. This work sets a foundation for understanding how swimming motility may be related to the inconsistency in biocontrol bacteria performance in the field.


Assuntos
Bactérias , Pseudomonas , Natação , Flagelos/genética , Fosfatos
11.
Water Sci Technol ; 89(5): 1124-1141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483489

RESUMO

In this study, a fixed-bed biofilm membrane bioreactor was used to assess denitrification and carbon removal performance, membrane fouling, composition, and the dynamics of microbial communities across 10 salinity levels. As salinity levels increased (from 0 to 30 g/L), the removal efficiency of total nitrogen and chemical oxygen demand decreased from 98 and 86% in Phase I to 25 and 45% in Phase X, respectively. Beyond a salinity level of 10 g/L, membrane fouling accelerated considerably. The analysis of fouling resistance distribution suggested that soluble microbial products (SMPs) were the primary cause of this phenomenon. The irregularity in microbial community succession reflected the varying adaptability of different bacteria to different salinity levels. The relative abundance of Sulfuritalea, Lentimircobium, Thauera, and Pseudomonas increased from 20.2 to 47.7% as the experiments progressed. Extracellular polymeric substances-related analysis suggested that Azospirillum plays a positive role in preserving the structural integrity of the biofilm carrier. The SMP-related analysis showed a positive correlation between Lentimircobium, Thauera, Pseudomonas, and the SMP content. These results suggested that these three bacterial genera significantly promoted the release of SMP under salt stress, which in turn led to severe membrane fouling.


Assuntos
Desnitrificação , Salinidade , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Bactérias , Pseudomonas
12.
Nat Commun ; 15(1): 2356, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490991

RESUMO

Machine learning applied to large compendia of transcriptomic data has enabled the decomposition of bacterial transcriptomes to identify independently modulated sets of genes, such iModulons represent specific cellular functions. The identification of iModulons enables accurate identification of genes necessary and sufficient for cross-species transfer of cellular functions. We demonstrate cross-species transfer of: 1) the biotransformation of vanillate to protocatechuate, 2) a malonate catabolic pathway, 3) a catabolic pathway for 2,3-butanediol, and 4) an antimicrobial resistance to ampicillin found in multiple Pseudomonas species to Escherichia coli. iModulon-based engineering is a transformative strategy as it includes all genes comprising the transferred cellular function, including genes without functional annotation. Adaptive laboratory evolution was deployed to optimize the cellular function transferred, revealing mutations in the host. Combining big data analytics and laboratory evolution thus enhances the level of understanding of systems biology, and synthetic biology for strain design and development.


Assuntos
Escherichia coli , Biologia Sintética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Pseudomonas/genética
13.
Commun Biol ; 7(1): 295, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461208

RESUMO

Pseudomonas aeruginosa, a common nosocomial pathogen, relies on siderophores to acquire iron, crucial for its survival in various environments and during host infections. However, understanding the molecular mechanisms of siderophore regulation remains incomplete. In this study, we found that the BfmRS two-component system, previously associated with biofilm formation and quorum sensing, is essential for siderophore regulation under high osmolality stress. Activated BfmR directly bound to the promoter regions of pvd, fpv, and femARI gene clusters, thereby activating their transcription and promoting siderophore production. Subsequent proteomic and phenotypic analyses confirmed that deletion of BfmRS reduces siderophore-related proteins and impairs bacterial survival in iron-deficient conditions. Furthermore, phylogenetic analysis demonstrated the high conservation of the BfmRS system across Pseudomonas species, functional evidences also indicated that BfmR homologues from Pseudomonas putida KT2440 and Pseudomonas sp. MRSN12121 could bind to the promoter regions of key siderophore genes and osmolality-mediated increases in siderophore production were observed. This work illuminates a novel signaling pathway for siderophore regulation and enhances our understanding of siderophore-mediated bacterial interactions and community establishment.


Assuntos
Infecções por Pseudomonas , Sideróforos , Humanos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pressão Osmótica , Filogenia , Proteômica , Ferro/metabolismo , Pseudomonas/metabolismo
14.
Mol Biol Rep ; 51(1): 419, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483683

RESUMO

BACKGROUND: A novel lytic bacteriophage (phage) was isolated with Pseudomonas mendocina strain STP12 (P. mendocina) from the untreated site of Sewage Treatment Plant of Lovely Professional University, India. P. mendocina is a Gram-negative, rod-shaped, aerobic bacterium belonging to the family Pseudomonadaceae and has been reported in fifteen (15) cases of economically important diseases worldwide. METHODS AND RESULTS: Here, a novel phage specifically infecting and killing P. mendocina strain STP12 was isolated from sewage sample using enrichment, spot test and double agar overlay (DAOL) method and was designated as vB_PmeS_STP12. The phage vB-PmeS-STP12 was viable at wide range of pH and temperature ranging from 4 to10 and - 20 to 70 °C respectively. Host range and efficiency of plating (EOP) analysis indicated that phage vB-PmeS-STP12 was capable of infecting and killing P. mendocina strain STP6 with EOP of 0.34. Phage vB_PmeS_STP12 was found to have a significant bacterial reduction (p < 0.005) at all the doses administered, particularly at optimal MOI of 1 PFU/CFU, compared to the control. Morphological analysis using high resolution transmission electron microscopy (HR-TEM) revealed an icosahedral capsid of ~ 55 nm in diameter on average with a short, non-contractile tail. The genome of vB_PmeS_STP12 is a linear, dsDNA containing 36,212 bp in size with a GC content of 58.87% harbouring 46 open reading frames (ORFs). The 46 predicted ORFs encode proteins with functional information categorized as lysis, replication, packaging, regulation, assembly, infection, immune, and hypothetical. However, the genome of vB_PmeS_STP12 appeared to be devoid of tRNAs, integrase gene, toxins genes, virulence factors, antimicrobial resistance genes (ARGs) and CRISPR arrays. The blast analysis with phylogeny revealed that vB_PmeS_STP12 is genetically similar to Pseudomonas phage PMBT14, Pseudomonas phage Almagne and Serratia phage Serbin with a highest identity of 74.00%, 74.93% and 59.48% respectively. CONCLUSIONS: Taken together, characterization, morphological analysis and genome-informatics indicated that vB_PmeS_STP12 is podovirus morphotype belonging to the class Caudoviticetes, family Zobellviridae which appeared to be devoid of integrase gene, ARGs, CRISPR arrays, virulence factors and toxins genes, exhibiting stability and infectivity at wide range of pH (4 to10) and temperature (-20 to 70 °C), thereby making vB_PmeS_STP12 suitable for phage therapy or biocontrol. Based on the bibliometric analysis and data availability with respect to sequences deposited in GenBank, this is the first report of a phage infecting Pseudomonas mendocina.


Assuntos
Bacteriófagos , Terapia por Fagos , Humanos , Bacteriófagos/genética , Pseudomonas , Esgotos , Genoma Viral , Informática , Integrases , Fatores de Virulência , Filogenia
15.
Physiol Plant ; 176(2): e14258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522952

RESUMO

Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
16.
Sci Rep ; 14(1): 5454, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443405

RESUMO

It is widely believed that a significant portion of the gut microbiota, which play crucial roles in overall health and disease, originates from the food we consume. Sashimi is a type of popular raw seafood cuisine. Its microbiome, however, remained to be thoroughly explored. The objective of this study is to explore the microbiome composition in sashimi at the time when it is served and ready to be eaten. Specifically, our tasks include investigating the diversity and characteristics of microbial profiles in sashimi with respect to the fish types. We utilized the Sanger-sequencing based DNA barcoding technology for fish species authentication and next-generation sequencing for sashimi microbiome profiling. We investigated the microbiome profiles of amberjack, cobia, salmon, tuna and tilapia sashimi, which were all identified using the MT-CO1 DNA sequences regardless of their menu offering names. Chao1 and Shannon indexes, as well as Bray-Curtis dissimilarity index were used to evaluate the alpha and beta diversities of sashimi microbiome. We successfully validated our previous observation that tilapia sashimi has a significantly higher proportions of Pseudomonas compared to other fish sashimi, using independent samples (P = 0.0010). Salmon sashimi exhibited a notably higher Chao1 index in its microbiome in contrast to other fish species (P = 0.0031), indicating a richer and more diverse microbial ecosystem. Non-Metric Multidimensional Scaling (NMDS) based on Bray-Curtis dissimilarity index revealed distinct clusters of microbiome profiles with respect to fish types. Microbiome similarity was notably observed between amberjack and tuna, as well as cobia and salmon. The relationship of microbiome similarity can be depicted as a tree which resembles partly the phylogenetic tree of host species, emphasizing the close relationship between host evolution and microbial composition. Moreover, salmon exhibited a pronounced relative abundance of the Photobacterium genus, significantly surpassing tuna (P = 0.0079), observed consistently across various restaurant sources. In conclusion, microbiome composition of Pseudomonas is significantly higher in tilapia sashimi than in other fish sashimi. Salmon sashimi has the highest diversity of microbiome among all fish sashimi that we analyzed. The level of Photobacterium is significantly higher in salmon than in tuna across all the restaurants we surveyed. These findings provide critical insights into the intricate relationship between the host evolution and the microbial composition. These discoveries deepen our understanding of sashimi microbiota, facilitating our decision in selecting raw seafood.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Filogenia , Microbiota/genética , Microbioma Gastrointestinal/genética , Salmão , Atum/genética , Alimentos Marinhos , Photobacterium , Pseudomonas
17.
Front Cell Infect Microbiol ; 14: 1280188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435302

RESUMO

Human infections caused by Pseudomonas citronellolis, an environmental bacterium, are infrequent, with only two cases related to uncommon urinary tract infections and bacteremia reported in recent years. All these cases typically occurred in elderly patients with compromised or decreased immune function. Simultaneously, the epithelial barrier disruption induced by invasive biopsy procedures or gastrointestinal disorders such as gastroenteritis provided a pathway for Pseudomonas citronellolis to infiltrate the organism. In this study, we present the first report of a case where Pseudomonas citronellolis and Escherichia coli were isolated from the inflamed appendix of a patient without underlying conditions. Compared to the Escherichia coli, Pseudomonas citronellolis has never been isolated in patients with appendicitis. We identified the species using MALDI-TOF MS and genetic sequencing. Based on our findings, we highlight the perspective that Pseudomonas citronellolis can colonize the intestines of healthy individuals and may trigger infections like appendicitis.


Assuntos
Apendicite , Enterocolite , Pseudomonas , Idoso , Humanos , Escherichia coli/genética , Virulência , Intestinos , Doença Aguda , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Food Microbiol ; 120: 104466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431318

RESUMO

In this study, we evaluated the histomorphology, reactive oxygen species (ROS), protein degradation, and iron metabolism characteristics and differential expression analysis of genes for siderophores synthesis and protease secretion in prepared beef steaks inoculated alone or co-inoculated with P. weihenstephanensis, B. thermotrichothrix and M. caseolyticus at 4 °C for 12 days. The results showed that the P. weihenstephanensis was the key bacteria that degraded protein in the process of prepared beef steaks spoilage, which led to protein oxidation by promoting ferritin degradation to release free iron and inducing ROS accumulation. The highest expression of FpvA and AprE was detected in the P. weihenstephanensis group by comparing qRT-PCR of the different inoculation groups. Both qRT-PCR and Western blot revealed that ferritin heavy polypeptide and ferritin light chain polypeptide gene and protein expressions were significantly higher in the P. weihenstephanensis inoculation group compared to the other inoculation groups. Results suggested that FpvA and AprE might play roles in meat spoilage and were potential positional, physiological and functional candidate genes for improving the quality traits of prepared beef steaks. This work may provide insights on controlling food quality and safety by intervening in spoilage pathways targeting iron carrier biosynthesis or protease secretion genes.


Assuntos
Carne , Peptídeo Hidrolases , Pseudomonas , Animais , Bovinos , Espécies Reativas de Oxigênio , Carne/microbiologia , Ferritinas/genética , Peptídeos
19.
Food Microbiol ; 120: 104494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431335

RESUMO

Bacterial volatile compounds (BVCs) facilitate interspecies communication in socio-microbiology across physical barriers, thereby influencing interactions between diverse species. The impact of BVCs emitted from Pseudomonas on the biofilm formation characteristics of Listeria monocytogenes within the same ecological niche has been scarcely investigated under practical conditions of food processing. The objective of this study was to explore the motility and biofilm formation characteristics of L. monocytogenes under the impact of Pseudomonas BVCs. It was revealed that BVCs of P. fluorescens, P. lundensis, and P. fragi significantly promoted swimming motility of L. monocytogenes (P < 0.05). As evidenced by crystal violet staining, the L. monocytogenes biofilms reached a maximum OD570 value of approximately 3.78 at 4 d, which was 0.65 units markedly higher than that of the control group (P < 0.05). Despite a decrease in adherent cells of L. monocytogenes biofilms among the BVCs groups, there was a remarkable increase in the abundance of extracellular polysaccharides and proteins with 3.58 and 4.90 µg/cm2, respectively (P < 0.05), contributing to more compact matrix architectures, which suggested that the BVCs of P. fluorescens enhanced L. monocytogenes biofilm formation through promoting the secretion of extracellular polymers. Moreover, the prominent up-regulated expression of virulence genes further revealed the positive regulation of L. monocytogenes under the influence of BVCs. Additionally, the presence of BVCs significantly elevated the pH and TVB-N levels in both the swimming medium and biofilm broth, thereby exhibiting a strong positive correlation with increased motility and biofilm formation of L. monocytogenes. It highlighted the crucial signaling regulatory role of BVCs in bacterial interactions, while also emphasizing the potential food safety risk associated with the hitchhiking behavior of L. monocytogenes, thereby shedding light on advancements in control strategies for food processing.


Assuntos
Listeria monocytogenes , Pseudomonas fluorescens , Pseudomonas fluorescens/fisiologia , Listeria monocytogenes/genética , Técnicas de Cocultura , Natação , Biofilmes , Pseudomonas
20.
Environ Pollut ; 348: 123818, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508367

RESUMO

Currently, the selection of non-pathogenic microorganisms that lack clinically relevant antimicrobial resistance is crucial to bioaugmentation strategies. Pseudomonas sp. P26 (P26) is an environmental bacterium of interest due to its ability to remove aromatic compounds from petroleum, but its safety characteristics are still unknown. The study aimed to: a) determine P26 sensitivity to antimicrobials, b) investigate the presence of quinolone and ß-lactam resistance genes, c) determine the presence of virulence factors, and d) evaluate the effect of P26 on the viability of Galleria mellonella (an invertebrate animal model). P26 antimicrobial sensitivity was determined in vitro using the Kirby-Bauer agar diffusion method and the VITEK 2 automated system (BioMerieux®). Polymerase Chain Reaction was employed for the investigation of genes associated with quinolone resistance, extended-spectrum ß-lactamases, and carbapenemases. Hemolysin and protease production was determined in human blood agar and skimmed-milk agar, respectively. In the in vivo assay, different doses of P26 were injected into Galleria mellonella larvae and their survival was monitored daily. Control larvae injected with Pseudomonas putida KT2440 (a strain considered as safe) and Pseudomonas aeruginosa PA14 (a pathogenic strain) were included. Pseudomonas sp. P26 was susceptible to most evaluated antimicrobials, except for trimethoprim-sulfamethoxazole. No epidemiologically relevant genes associated with quinolone and ß-lactam resistance were identified. Hemolysin and protease production was only evidenced in the virulent strain (PA14). Furthermore, the results obtained in the in vivo experiment demonstrated that inocula less than 108 CFU/mL of P26 and P. putida KT2440 did not significantly affect larval survival, whereas larvae injected with the lowest dose of the pathogenic strain P. aeruginosa PA14 experienced instant mortality. The results suggest that Pseudomonas sp. P26 is a safe strain for its application in environmental bioremediation processes. Additional studies will be conducted to ensure the safety of this bacterium against other organisms.


Assuntos
Anti-Infecciosos , Mariposas , Quinolonas , Animais , Humanos , Pseudomonas/genética , Ágar/farmacologia , Proteínas Hemolisinas/farmacologia , Mariposas/microbiologia , Larva , Pseudomonas aeruginosa , Anti-Infecciosos/farmacologia , Peptídeo Hidrolases , Antibacterianos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...